Design iGuzzini

iGuzzini

Last information update: April 2024

Product configuration: Q435+QI00.12

Q435: Minimal continuous line moduleUp/Down Office / Working UGR < 19L 3594

QI00.12: Plate - Up / Down - Office / Working UGR < 19 - DALI - Warm LED - L 3588 - 68.3W 7571lm - 3000K - Aluminium

Product code

Q435: Minimal continuous line moduleUp/Down Office / Working UGR < 19L 3594

Technical description

Extruded aluminium intermediate profile - Minimal (frameless) version for flush with ceiling mounting and up + down emission; this allows continuous lines to be created with other intermediate profiles and an initial profile (required). Microprismatic lower screen for controlled luminance emission UGR < 19 - 3000 cd/m2 (working lighting); screen set up for connecting several lengths by overlapping. Methacrylate diffusing screen for upper emission. Light flow split into approx. 70% down / 30% up.

Installation can be pendant-mounted using suitable accessories to be ordered separately; mechanical systems for connecting modules included in the package.

Colour

White (01)* | Aluminium (12)*

Weight (Kg) 8.45

* Colours on request

Mounting

wall surface|ceiling pendant

Wiring

Set up to house the LED modules required by the system.

Notes

Take care with the system configuration. To complete a continuous line correctly there must always be an initial module at the start or end of the composition.

Complies with EN60598-1 and pertinent regulations

Product code

QI00.12: Plate - Up / Down - Office / Working UGR < 19 - DALI - Warm LED - L 3588 - 68.3W 7571lm - 3000K - Aluminium

Technical description

LED module set up for housing in initial or intermediate system profiles, ideal for particularly long light lines. High efficiency up + down emission for Working profiles (with a controlled luminance micro-prismatic lower screen). DALI dimmable electronic control gear integrated in the luminaire. Extruded aluminium heat sink; high emission yield flux enhancer. Warm 3000K LED

Installation

Module insertion on profiles facilitated by a quick coupling system.

Colour

Weight (Kg) 4.9

Indeterminate (00)

Wiring

Quick coupling terminal block connection to simplify connections between the subsequent modules. Complete with integrated dimmable digital DALI control gear.

Important: the triple length intermediate luminous module can be used for both initial profiles - L 3594 - for stand-alone applications, and intermediate profiles - L 3594 - for continuous line applications.

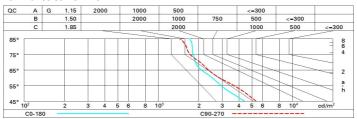
Complies with EN60598-1 and pertinent regulations

ec	hn	ical	da	ta
··	••••	.cui	uu	L

Im system:	7571	Co
W system:	68.3	M
Im source:	11300	Lif
W source:	61	Vo
Luminous efficiency (lm/W, real value):	110.8	La Nu
Im in emergency mode:	-	as
Total light flux at or above an angle of 90° [Lm]:	2402	Z\ Nt
Light Output Ratio (L.O.R.) [%]:	67	as
CRI (minimum):	80	

Colour temperature [K]: /lacAdam Step: > 50,000h - L90 - B10 (Ta 25°C) ife Time LED 1: oltage [Vin]: 230 LED amp code: lumber of lamps for optical ssembly: VEI Code: LED lumber of optical ssemblies:

3000


Polar

Imax=3184 cd	C0-180		Lux				
180°	$\nearrow \nearrow \nearrow$	nL 0.67 66-90-98-68-67 UGR 15.5-15.6	h	d1	d2	Em	Emax
90°	1	DIN B.53	2	2.7	3.2	553	796
	\/	UTE 0.46C+0.21T F*1=656	4	5.4	6.5	138	199
4000	\times	F"1+F"2=898 F"1+F"2+F"3=978	6	8.1	9.7	61	88
α=68° / 78°	X /	LG3 L<3000 cd/m² at 65° UGR<16 L<3000 cd/mq @	9 ₆₅ 8	10.8	13	35	50

Utilisation factors

R	77	75	73	71	55	53	33	00	DRR
K0.8	43	38	34	31	35	31	29	24	53
1.0	47	42	38	35	39	35	33	27	60
1.5	53	48	45	42	44	42	39	32	71
2.0	56	52	50	47	48	46	42	36	78
2.5	58	55	53	51	50	48	45	38	82
3.0	59	57	55	53	52	50	46	39	86
4.0	61	59	57	56	54	52	48	41	89
5.0	62	60	59	57	55	54	49	42	91

Luminance curve limit

UGR diagram

Rifled	ct.:											
ceil/c	av	0.70	0.70	0.50	0.50	0.30	0.70	0.70	0.50	0.50	0.30	
walls		0.50	0.30	0.50	0.30	0.30	0.50	0.30	0.50	0.30	0.30	
work	pl.	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	
Roon	n dim	2020		viewed			25.00		viewed			
x	У		C	rosswis	e		endwise					
2H	2H	13.3	14.0	14.0	14.7	15.5	14.3	15.0	15.0	15.7	16.6	
	ЗН	14.0	14.6	14.7	15.3	16.2	14.5	15.1	15.2	15.8	16.7	
	4H	14.3	14.9	15.1	15.6	16.5	14.5	15.0	15.2	15.8	16.7	
	бН	14.6	15.1	15.4	15.9	16.8	14.4	14.9	15.2	15.7	16.7	
	8H	14.7	15.2	15.5	16.0	16.9	14.4	14.9	15.2	15.7	16.6	
	12H	14.8	15.3	15.6	16.0	17.0	14.3	14.8	15.1	15.6	16.0	
4H	2H	13.6	14.2	14.4	14.9	15.8	15.1	15.7	15.9	16.5	17.	
	ЗН	14.4	14.9	15.2	15.7	16.7	15.4	15.9	16.2	16.7	17.	
	4H	14.9	15.3	15.7	16.1	17.1	15.5	16.0	16.3	16.8	17.7	
	6H	15.3	15.7	16.1	16.5	17.5	15.6	16.0	16.4	16.8	17.8	
	HS	15.5	15.8	16.3	16.6	17.7	15.6	15.9	16.4	16.8	17.8	
	12H	15.6	15.9	16.4	16.7	17.8	15.6	15.9	16.4	16.7	17.8	
нв	4H	15.0	15.3	15.8	16.2	17.2	15.9	16.2	16.7	17.1	18.	
	6H	15.6	15.8	16.4	16.7	17.8	16.1	16.4	16.9	17.2	18.3	
	HS	15.8	16.0	16.7	16.9	0.81	16.2	16.4	17.0	17.3	18.	
	12H	16.0	16.2	16.9	17.1	18.2	16.2	16.4	17.1	17.3	18.4	
12H	4H	15.0	15.3	15.8	16.1	17.2	15.9	16.2	16.8	17.1	18.	
	6H	15.6	15.8	16.5	16.7	17.8	16.2	16.4	17.0	17.3	18.	
	HS	15.9	16.1	16.8	17.0	18.1	16.3	16.5	17.2	17.4	18.5	
Varia	tions wi	th the ob	oserver p	osition	at spacin	ıg:						
S =	1.0H	0.3 / -0.5					0.3 / -0.4					
	1.5H	0.5 / -0.9					0.6 / -1.1					
	2.0H		1	2 / -1.	3			1	.5 / -1.	5		