iGuzzini

Last information update: April 2024

Product configuration: Q705

Q705: Spotlight with base - Neutral White Led - Class III - Flood optic

145

Ø76

Product code

Q705: Spotlight with base - Neutral White Led - Class III - Flood optic

Technical description

Spotlight designed to use LED lamps and a Flood optic. The optical assembly and base is made of EN1706AC 46100LF aluminium alloy and subjected to a multi-step, pre-treatment process, in which the main phases are degreasing, fluorozirconation (a protective surface film) and sealing (with a nano-structured silane layer). The following painting stage consists of a primer and a liquid acrylic paint, cured at 150°C, with a high level of weather and UV ray resistance. 5 mm thick tempered sodium-calcium closing glass. Double adjustability allows a 360° rotation about the vertical axis and 90° tilting relative to the horizontal plane. Mechanical aiming locks for rotation on both the vertical axis and horizontal plane. Complete with a monochrome LED circuit and an Opti Beam Reflector optic system. The product is supplied with a PG13.5 cable gland and black rubber outlet cable complete with antitranspiration device. Black rubber outlet cable complete with anti-transpiration device. Electronic ballast to be ordered separately. Option of using optic accessories assembled via an accessory holder frame. All external screws used are made of A2 stainless steel.

Installation

Floor, wall, ceiling or ground-installed via a stake.

Weight (Kg) Colour White (01) | Black (04) | Grey (15) | Rust Brown (F5) 1.3

wall surface|ground spike

Wiring

The product is supplied with a black rubber outlet cable complete with anti-transpiration device L=1000mm.

Complies with EN60598-1 and pertinent regulations

Technical data

Im system:	1462	MacAdam Step:	2		
W system:	12	Life Time LED 1:	100,000h - L90 - B10 (Ta 25°C)		
Im source:	1850	Life Time LED 2:	100,000h - L90 - B10 (Ta 40°C)		
W source:	12	Lamp code:	LED		
Luminous efficiency (lm/W, real value):	121.8	Number of lamps for optical assembly:	1		
Im in emergency mode:	-	ZVEI Code:	LED		
Total light flux at or above an angle of 90° [Lm]:	0	Number of optical assemblies:	1		
Light Output Ratio (L.O.R.) [%]:	79	Intervallo temperatura ambiente:	from -30°C to 50°C.		
Beam angle [°]:	40°	Lifetime of product at	≥ 50.000h Ta=40°C		
CRI (minimum):	80	ambient operating			
Colour temperature [K]:	4000	temperature:			
		LED current [mA]:	350		

Polar

Imax=3427 cd	Lux			
90° 180° 90°	h	d	Em	Emax
	4	2.9	170	214
X XIIX X	8	5.8	42	54
3000	12	8.7	19	24
α=40°	16	11.6	11	13

Isolux Lux h=5 m. α=0° 0.0 0.0 0.2 0.0 LED 12 W 3 8

D:0				and the second	(N) X (N) (N) (N) (N) (N)	5617013200170	10,050,00				
HITIE	et.:										
ceil/cav walls work pl. Room dim		0.70	0.70	0.50	0.50	0.30	0.70	0.70	0.50	0.50	0.30
		0.50 0.20	0.30	0.50 0.20	0.30	0.30	0.50 0.20	0.30	0.50 0.20	0.30	0.30
								0.20		0.20	
		viewed				viewed					
x	У		(crosswis	e				endwise	L g	
2H	2H	5.2	5.8	5.5	6.0	6.3	5.2	5.8	5.5	6.0	6.3
	ЗН	5.1	5.7	5.5	5.9	6.2	5.1	5.6	5.4	5.9	6.2
	4H	5.1	5.6	5.4	5.9	6.1	5.1	5.5	5.4	5.8	6.
	бН	5.0	5.5	5.4	5.8	6.1	5.0	5.4	5.3	5.7	6.
	H8	5.0	5.4	5.4	5.7	6.1	4.9	5.4	5.3	5.7	6.0
	12H	5.0	5.4	5.3	5.7	6.0	4.9	5.3	5.3	5.6	6.0
4H	2H	5.1	5.5	5.4	5.8	6.1	5.1	5.6	5.4	5.9	6.
	3H	5.0	5.4	5.3	5.7	6.0	5.0	5.4	5.3	5.7	6.
	4H	4.9	5.2	5.3	5.6	6.0	4.9	5.2	5.3	5.6	6.0
	6H	4.8	5.1	5.3	5.5	5.9	4.8	5.1	5.2	5.5	5.9
	HS	4.8	5.1	5.2	5.5	5.9	4.8	5.1	5.2	5.5	5.9
	12H	4.7	5.0	5.2	5.4	5.9	4.7	5.0	5.2	5.4	5.9
нв	4H	4.8	5.1	5.2	5.5	5.9	4.8	5.1	5.2	5.5	5.9
	6H	4.7	4.9	5.2	5.4	5.9	4.7	4.9	5.2	5.4	5.9
	HS	4.7	4.9	5.1	5.3	5.8	4.7	4.9	5.1	5.3	5.8
	12H	4.6	4.8	5.1	5.3	5.8	4.6	4.8	5.1	5.3	5.8
12H	4H	4.7	5.0	5.2	5.4	5.9	4.7	5.0	5.2	5.4	5.9
	бН	4.7	4.9	5.1	5.3	5.8	4.7	4.9	5.1	5.3	5.8
	HS	4.6	4.8	5.1	5.3	5.8	4.6	4.8	5.1	5.3	5.8
Varia	tions wi	th the ol	oserverp	noitien	at spacir	ng:					
S =	1.0H		6	.6 / -9	.4				.6 / -9		
	1.5H	9.4 / -10.3				9.4 / -10.3					