Design iGuzzini

iGuzzini

Last information update: April 2025

Product configuration: MQ35

MQ35: Adjustable 2 x 10 - cell Recessed frame - LED - Warm white - DALI dimmable power supply - Flood Beam

Product code

MQ35: Adjustable 2 x 10 - cell Recessed frame - LED - Warm white - DALI dimmable power supply - Flood Beam

Technical description

Recessed rectangular luminaire with LEDs. Shaped steel sheet structural compartment with outer rim. The two linear elements with 10 lighting cells, in die-cast aluminium and independently adjustable, can be used to direct the emission with a tilting adjustability of +/- 30°. Metallised thermoplastic high definition optics, integrated in a rear position in the black anti-glare screen; the structure of the optical system prevents a pinpoint effect, allowing precise, circular light distribution and emission with controlled glare. Supplied with DALI dimmable control gear connected to the luminaire. Warm white high chromatic yield LED.

recessed with mechanical blocking system for false ceilings from 1 to 25 mm; can be installed on cealings and walls (vertical + horizontal) - preparation slot 135 x 295

Colour

Black / Black (43) | Black / White (47) | Grey / Black (74)*

Weight (Kg)

2.8

* Colours on request

Mounting

wall recessed|ceiling recessed

Wiring

on power box: screw connections

Notes

dimming function with pushbutton (TOUCH DIM/PUSH): for this option consult the instructions included in the package

Complies with EN60598-1 and pertinent regulations

Technical data					
Im system:	2955	MacAdam Step:	3		
W system:	46.5	Life Time LED 1:	50,000h - L90 - B10 (Ta 25°C)		
Im source:	1850	Lamp code:	LED		
W source:	20 Number of lamps for opt		al 1		
Luminous efficiency (Im/W,	63.6	assembly:			
real value):		ZVEI Code:	LED		
Im in emergency mode:	-	Number of optical	2		
Total light flux at or above	0	assemblies:			
an angle of 90° [Lm]:		Power factor:	See installation instructions		
Light Output Ratio (L.O.R.)	80	Inrush current:	10 A / 200 μs		
[%]:		Maximum number of			
Beam angle [°]:	31°	luminaires of this type per	B10A: 18 luminaires B16A: 30 luminaires C10A: 31 luminaires		
CRI (minimum):	95	miniature circuit breaker:			
CRI (typical):	97				
Colour temperature [K]:	3000	Mr. i a	C16A: 51 luminaires		
		Minimum dimming %:	1		
		Overvoltage protection:	4kV Common mode & 4kV Differential mode		
		Control:	DALI-2		

Polar

Imax=5071 cd CIE	Lux			
		n d	Em	Emax
DIN A.61 UTE		2 1.1	975	1268
0.80A F"1=1	000	4 2.3	244	317
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	The state of the s	3.4	108	141
	- <1500 cd/m² at 65° 10 L<1500 cd/mq @65°	8 4.6	61	79

Utilisation factors

R	77	75	73	71	55	53	33	00	DRR
K0.8	72	69	66	64	68	66	65	63	78
1.0	75	72	70	68	71	69	69	66	83
1.5	79	77	75	73	76	74	73	71	89
2.0	81	80	78	77	79	77	76	74	93
2.5	83	82	81	80	80	79	79	77	96
3.0	84	83	82	81	82	81	80	78	98
4.0	85	84	84	83	83	82	81	79	99
5.0	85	85	85	84	84	83	82	80	100

Corre	ected UC	R value:	s (at 185	0 Im bar	e lamp lu	eu oni mu	flux)					
Rifled	ct.:											
ceil/cav walls work pl. Room dim x y		0.70	0.70	0.50	0.50	0.30	0.70	0.70	0.50	0.50	0.30	
		0.50	0.30	0.50 0.20	0.30	0.30	0.50	0.30	0.50	0.30 0.20	0.30	
											0.20	
		viewed					viewed					
			crosswis	е	endwise							
2H	2H	-3.2	-2.7	-2.9	-2.4	-2.2	-3.2	-2.7	-2.9	-2.4	-2.2	
	ЗН	-3.3	-2.8	-3.0	-2.6	-2.3	-3.3	-2.8	-3.0	-2.6	-2.3	
	4H	-3.4	-2.9	-3.0	-2.6	-2.3	-3.4	-2.9	-3.0	-2.6	-2.3	
	бН	-3.4	-3.0	-3.1	-2.7	-2.4	-3.4	-3.0	-3.1	-2.7	-2.	
	нв	-3.5	-3.1	-3.1	-2.8	-2.4	-3.5	-3.1	-3.1	-2.8	-2.	
	12H	-3.5	-3.1	-3.1	-2.8	-2.5	-3.5	-3.1	-3.1	-2.8	-2.5	
4H	2H	-3.4	-2.9	-3.0	-2.6	-2.3	-3.4	-2.9	-3.0	-2.6	-2.3	
	ЗН	-3.5	-3.1	-3.1	-2.8	-2.5	-3.5	-3.1	-3.1	-2.8	-2.5	
	4H	-3.6	-3.3	-3.2	-2.9	-2.5	-3.6	-3.3	-3.2	-2.9	-2.5	
	бН	-3.7	-3.4	-3.3	-3.0	-2.6	-3.7	-3.4	-3.3	-3.0	-2.0	
	HS	-3.7	-3.5	-3.3	-3.1	-2.6	-3.7	-3.5	-3.3	-3.1	-2.0	
	12H	-3.8	-3.6	-3.3	-3.1	-2.7	-3.8	-3.6	-3.3	-3.1	-2.7	
нв	4H	-3.7	-3.5	-3.3	-3.1	-2.6	-3.7	-3.5	-3.3	-3.1	-2.6	
	6H	-3.8	-3.6	-3.4	-3.2	-2.7	-3.8	-3.6	-3.4	-3.2	-2.	
	HS	-3.9	-3.7	-3.4	-3.2	-2.7	-3.9	-3.7	-3.4	-3.2	-2.7	
	12H	-3.9	-3.8	-3.4	-3.3	-2.8	-3.9	-3.8	-3.4	-3.3	-2.8	
12H	4H	-3.8	-3.6	-3.3	-3.1	-2.7	-3.8	-3.6	-3.3	-3.1	-2.	
	6H	-3.9	-3.7	-3.4	-3.2	-2.7	-3.9	-3.7	-3.4	-3.2	-2.7	
	H8	-3.9	-3.8	-3.4	-3.3	-2.8	-3.9	-3.8	-3.4	-3.3	-2.8	
Varia	tions wi	th the ol	pserverp	noitien	at spacin	ıg:						
S =	1.0H	6.8 / -18.5					6.8 / -18.5					
	1.5H	9.6 / -18.7					9.6 / -18.7					
	2.0H	11.6 / -23.0					11.6 / -23.0					